Transition-based Semantic Role Labeling Using Predicate Argument Clustering
نویسندگان
چکیده
This paper suggests two ways of improving semantic role labeling (SRL). First, we introduce a novel transition-based SRL algorithm that gives a quite different approach to SRL. Our algorithm is inspired by shift-reduce parsing and brings the advantages of the transitionbased approach to SRL. Second, we present a self-learning clustering technique that effectively improves labeling accuracy in the test domain. For better generalization of the statistical models, we cluster verb predicates by comparing their predicate argument structures and apply the clustering information to the final labeling decisions. All approaches are evaluated on the CoNLL’09 English data. The new algorithm shows comparable results to another state-of-the-art system. The clustering technique improves labeling accuracy for both in-domain and out-of-domain tasks.
منابع مشابه
برچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملDistributed Representations for Unsupervised Semantic Role Labeling
We present a new approach for unsupervised semantic role labeling that leverages distributed representations. We induce embeddings to represent a predicate, its arguments and their complex interdependence. Argument embeddings are learned from surrounding contexts involving the predicate and neighboring arguments, while predicate embeddings are learned from argument contexts. The induced represe...
متن کاملSemantic Mapping Using Automatic Word Alignment and Semantic Role Labeling
To facilitate the application of semantics in statistical machine translation, we propose a broad-coverage predicate-argument structure mapping technique using automated resources. Our approach utilizes automatic syntactic and semantic parsers to generate Chinese-English predicate-argument structures. The system produced a many-to-many argument mapping for all PropBank argument types by computi...
متن کاملA Semantic Feature for Verbal Predicate and Semantic Role Labeling Using SVMs
This paper shows that semantic role labeling is a consequence of accurate verbal predicate labeling. In doing so, the paper presents a novel type of semantic feature for verbal predicate labeling using a new corpus. The corpus contains verbal predicates, serving as verb senses, that have semantic roles associated with each argument. Although much work has been done using feature vectors with ma...
متن کاملA Japanese Predicate Argument Structure Analysis using Decision Lists
This paper describes a new automatic method for Japanese predicate argument structure analysis. The method learns relevant features to assign case roles to the argument of the target predicate using the features of the words located closest to the target predicate under various constraints such as dependency types, words, semantic categories, parts of speech, functional words and predicate voic...
متن کامل